首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38836篇
  免费   3807篇
  国内免费   2658篇
电工技术   1461篇
综合类   2510篇
化学工业   9917篇
金属工艺   3526篇
机械仪表   2263篇
建筑科学   1127篇
矿业工程   541篇
能源动力   1792篇
轻工业   3890篇
水利工程   278篇
石油天然气   920篇
武器工业   203篇
无线电   4936篇
一般工业技术   8333篇
冶金工业   1137篇
原子能技术   532篇
自动化技术   1935篇
  2024年   130篇
  2023年   638篇
  2022年   855篇
  2021年   1203篇
  2020年   1279篇
  2019年   1144篇
  2018年   1070篇
  2017年   1411篇
  2016年   1351篇
  2015年   1393篇
  2014年   1933篇
  2013年   2394篇
  2012年   2531篇
  2011年   2968篇
  2010年   2166篇
  2009年   2241篇
  2008年   1997篇
  2007年   2548篇
  2006年   2406篇
  2005年   2024篇
  2004年   1782篇
  2003年   1514篇
  2002年   1304篇
  2001年   1196篇
  2000年   1088篇
  1999年   806篇
  1998年   700篇
  1997年   573篇
  1996年   494篇
  1995年   453篇
  1994年   408篇
  1993年   344篇
  1992年   248篇
  1991年   166篇
  1990年   133篇
  1989年   109篇
  1988年   72篇
  1987年   61篇
  1986年   24篇
  1985年   26篇
  1984年   21篇
  1983年   15篇
  1982年   23篇
  1981年   8篇
  1980年   8篇
  1979年   9篇
  1976年   3篇
  1963年   3篇
  1959年   6篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
为进一步探究微弧氧化膜和7050铝合金的氢脆敏感性之间的关系,采用了湿空气中的慢应变速率拉伸、拉伸断口形貌分析、微弧氧化试样表面形貌分析及氢含量测试等表征手段,验证了微弧氧化膜抑制7050铝合金在湿空气中发生氢脆的机制。结果表明,不同微弧氧化电压下制备的膜层对7050铝合金具有不同的抑制氢脆效果,抑制机制主要由膜阻氢进入试样和膜致附加压应力两个方面组成。  相似文献   
102.
根据角接触球轴承自旋运动特征,同时考虑弹流润滑效应,建立角接触球轴承考虑自旋运动的弹流润滑模型;采用多重网格法求解弹性变形,利用有限差分法迭代求解雷诺方程,得到较为精确的数值解;分析不同赫兹接触压力、滚道表面粗糙度下自旋对角接触球轴承弹流润滑和油膜刚度的影响。结果表明:考虑自旋时随着Hertz接触压力、自旋角速度增大,油膜厚度减小,油膜压力增大,油膜承压区域呈细长状,并向接触中心靠近;随着滚道表面粗糙度幅值增大,油膜压力和膜厚均出现了波动,且考虑自旋运动时,轴承油膜厚度明显减小,油膜局部压力峰值更大;随着卷吸速度、润滑油黏度增大,油膜刚度减小,而考虑自旋运动时油膜刚度值更大;随着自旋角速度增大,油膜刚度逐渐增大。  相似文献   
103.
Poly(lactic acid) (PLA)/kraft pulp fiber (30 wt%) composites were prepared with and without a coupling agent (epoxidized linseed oil, ELO, 1.5 wt%) by injection molding. The non-annealed composite samples, along with lean PLA, were exposed to two hydro-thermal conditions: cyclic 50% RH/90% RH at 23 and 50°C, both up to 42 days. The aging effects were observed by size exclusion chromatography, differential scanning calorimetry, dynamic and tensile mechanical analysis, and fracture surface imaging. ELO temporarily accelerated the material's internal transition from viscous to an increasingly elastic response during the aging at 50°C. ELO also slowed down the tensile strength reduction of the composites at 50°C. These observations were explained with the hydrophobic ELO molecules' coupling and plasticizing effects at fiber/matrix interfaces. No effects were observed at 23°C.  相似文献   
104.
An effective electron-injection layer (EIL) is crucial to the development of highly efficient polymer light-emitting diodes (PLEDs) using stable, high work-function aluminium as the cathode. This work presents the first investigation using hydroxyethyl cellulose (HEC), filled with chelate complexes [(CH3COO)2-M, EDTA-M; M: Ca2+, Mg2+], as an electron-injection layer (EIL) to fabricate multilayer polymer light-emitting diodes (ITO/PEDO:PSS/HY-PPV/EIL/Al) by spin-coating processes. Devices based on HEC doped with EDTA-M provided the best performance. The maximum luminance and maximum current efficiency of polymer light-emitting diodes with EDTA-Ca in an HEC layer were 7502 cd/m2 and 2.85 cd/A, respectively, whereas those with EDTA-Mg were 8443 cd/m2 and 3.12 cd/A, which was approximately seven- to eight-fold of that without EIL. This performance enhancement was attributed to electron donation from the chelator that reduces metal cations to a “pseudo-metallic state”, enabling it to act as an intermediate step to facilitate electron injection. The results demonstrate that chelates of bivalent cations with EDTA can potentially serve as electron-injection materials for optoelectronic applications.  相似文献   
105.
A long fatty side chain was introduced into the macromolecule of hydroxyethyl cellulose (HEC) via esterification reaction. The hydrophobicity of hydroxyethyl cellulose lauric acid ester (HECLAE) was enhanced in comparison with HEC. The obtained HECLAE was used as macromolecular coupling agent in poly (butylene succinate)/wood flour composites and exhibited a positive influence on improving the mechanical performance of composites. Besides, HECLAE plays a role as a hydrophobic agent in composites. A significant increase in storage modulus (E’) was observed upon the incorporation of treated wood flour. SEM images showed that the dispersion of treated wood flour in PBS matrix was improved.  相似文献   
106.
107.
Taking into account the effect of structural compliance, inverse dynamics of the active over-constrained parallel manipulator 6PUS–UPU with five degrees of freedom is solved in this article. Firstly, the relationship between driving forces and actuated force screws of each limb is derived. Then the coordination of elastic deformation between limbs which consider the effect of gravity and inertia is acquired. Finally the unique solution of driving forces for the active over-constrained parallel manipulator is derived by incorporating the force equilibrium equation of the moving platform. To validate the theoretical derivation, dynamics simulation model of manipulator based on rigid–flexible mixed structure is shown and numerical examples are given. Comparison with the traditional method of dynamics based on pseudo-inverse is also made. Finally, a feasible experimental method, as an effective test to the theoretical calculation, is proposed and applied on the prototype.  相似文献   
108.
The effect of the acidic hairy layer length on the interdiffusion of polymer between particles and as a consequence on the mechanical properties of the films produced from waterborne coatings has been studied. In order to isolate this effect, latexes with the same particle diameter and molecular weight but stabilized with poly(acrylic acid)-block-poly(butyl acrylate) (PAA-b-PBA) block copolymers of controlled and different lengths were prepared. Tensile strength measurements showed at the macroscopic level that the presence of AA chains in the particle surface reduced the mechanical properties of the films dried at room temperature, being its effect worse the longer the AA chain length. Higher annealing temperatures erased the negative effect of the acidic hairy layer on mechanical properties. The neutralization with NaOH instead of with NH4OH also led to worse mechanical properties. These macroscopic results were supported by Fluorescence Resonance Energy Transfer (FRET) experiments that showed that at the microscopic level, the extent of interdiffusion occurred slower when the AA chains in the particles surface increased, the annealing temperature was lower and when NaOH was used as neutralizing agent instead of NH4OH.  相似文献   
109.
In this work, we focus on the Ge nanoparticles (Ge-np) embedded ZnO multilayered thin films. Effects of reactive and nonreactive growth of ZnO layers on the rapid thermal annealing (RTA) induced formation of Ge-np have been specifically investigated. The samples were deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively on Si substrates. As-prepared thin film samples have been exposed to an ex-situ RTA at 600 °C for 60 s under forming gas atmosphere. Structural characterizations have been performed by X-ray Diffraction (XRD), Raman scattering, Secondary Ion Mass Spectroscopy (SIMS), and Scanning Electron Microscopy (SEM) techniques. It has been realized that reactive or nonreactive growth of ZnO layers significantly influences the morphology of the ZnO: Ge samples, most prominently the crystal structure of Ge-np. XRD and Raman analysis have revealed that while reactive growth results in a mixture of diamond cubic (DC) and simple tetragonal (ST12) Ge-np, nonreactive growth leads to the formation of only DC Ge-np upon RTA process. Formation of ST12 Ge-np has been discussed based on structural differences due to reactive and nonreactive growth of ZnO embedding layer.  相似文献   
110.
There is an increasing need to develop stable, high-intensity, efficient OLEDs in the deep blue and UV. Applications include blue pixels for displays and tunable narrow solid-state UV sources for sensing, diagnostics, and development of a wide band spectrometer-on-a-chip. With the aim of developing such OLEDs we demonstrate an array of deep blue to near UV tunable microcavity (μc) OLEDs (λ ∼373–469 nm) using, in a unique approach, a mixed emitting layer (EML) of poly(N-vinyl carbazole) (PVK) and 4,4′-bis(9-carbazolyl)-biphenyl (CBP), whose ITO-based devices show a broad electroluminescence (EL) in the wavelength range of interest. This 373–469 nm band expands the 493–640 nm range previously attained with μcOLEDs into the desired deep blue-to-near UV range. Moreover, the current work highlights interesting characteristics of the complexity of mixed EML emission in combinatorial 2-d μcOLED arrays of the structure 40 nm Ag/x  nm MoOx/∼30 nm PVK:CBP (3:1 weight ratio)/y  nm 4,7-diphenyl-1,10-phenanthroline (BPhen)/1 nm LiF/100 nm Al, where x = 5, 10, 15, and 20 nm and y = 10, 15, 20, and 30 nm. In the short wavelength μc devices, only CBP emission was observed, while in the long wavelength μc devices the emission from both PVK and CBP was evident. To understand this behavior simulations based on the scattering matrix method, were performed. The source profile of the EML was extracted from the measured EL of ITO-based devices. The calculated μc spectra indeed indicated that in the thinner, short wavelength devices the emission is primarily from CBP; in the thicker devices both CBP and PVK contribute to the EL. This situation is due to the effect of the optical cavity length on the relative contributions of PVK and CBP EL through a change in the wavelength-dependent emission rate, which was not suggested previously. Structural analysis of the EML and the preceding MoOx layer complemented the data analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号